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ABSTRACT
A model for the integrate mo of

order one, IMA (1, 1), having a seasonal (cyclic) component is
presented. The model incorporates a parameter for possible change in
level of the process after intervention, following methods developed
by Box and Tiao (1965), and Glass, Willson, and Gottmann (1972).
Least-squares estimates and associated significance tests for the
parameters of the model (in particular, the intervention parameter)
are derived. The results of a computer study and an example from real
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Abstract

The time-series experimental paradigm is extended to include processes
which have seasonal variation. A basic linear model is examined which includes
a seasonal component and intervention effect component. Transformation of
observations puts the model into general linear form, which is amenable to
solution by the method of least squares. Estimates for parameters of the model
are derived, and confidence intervals formed around them.

.A second method for dealing with the seasonal component is discussed.
L- -This-Ts baied upon seasonal adjus men p

method, that of differencing, is noted.

Applicability of these approaches in various parametric situations is
checked by the use of simulations. Computer-generated time-series processes
with different error variances and amplitudes were analyzed using the methods
discussed. Results suggest that the first method works best in cases where
error variance and amplitude are of the same order of magnitude. Seasonal
adjustment seems better for situations when the amplitude is much
larger than the error variance. Differencing was a poorer method in all cases.



Many stochastic processes observed in the behavioral sciences have

seasonal or cyclic components. Such periodic variation must be included

in any model which attempts to explain such processes parametrically. A

special case is the time-series experiment with seasonal component.

G1 as-s7Villso V eneral approach to

design and analysis of interrupted time-series experiments. The problem of

periodic variation was not considered, but its solution follows from the work

presented there.

Consider observation of a time-series process which follows a periodic

upward and downward movement over time distinct from the normal variation

in each observation. After a number of observations, an intervention is

made into the process, and additional observations are made. Analysis of the

data is now required. Certainly the observer is interested in changes in

the process due to intervention. He might also be interested in estimates of

the original level, period and amplitude of the seasonal variation, and in any

changes in the process after intervention. Mathematically, a discrete stochastic

process may be modelled by an auto-regressive-integrated moving-averages process

(ARIMA), following Box and Jenkins (1970). Glass et al (1972) note that for most

processes, a simple model suffices: the integrated-moving averages process of order

1 or 2, IMA (1,1) or IMA (2,2). The IMA (1,1) is a stationary process (doesn't

wander around much), in which random shocks or errors change the level of

the process,and then die out, except for a portion of each previous shock which

remains permanently. For IMA (2,2) (which is non-stational and wanders from

level to level), a portion of each two previous shocks remains. Only IMA (1,1)
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will be considered for the derivation of the model, but extension to IMA (2,2)

is straightforward.

Method 1

At each time t prior to intervention, theyealization of an IMA (1,1)

process with seasonal variation may be represented as a linear sum of terms,

following Box and Jenkins (1972):

t-1
zt = L +

o
.L,a. + A sin wt + at
-1

(I)

where L = level of process at the initial observation

A
o

= proportion of each shock (error) ai retained in the series

A = amplitude of the seasonal component

wt = argument of the sine term

ai = random shock (error) at time i, and

E(ai) = 0

cov (a.a.) = 021.
a

The sine term is just the first term of a Fourier representation of a

seasonal variation. It must be noted that such a term is deterministic, and

as such more useful in fitting data than in forecasting future data (see Box

and Jenkins, 1970; p. 301). The choice of a sine term rather than cosine

term is arbitrary and changes only the phase estimate.

After intervention an additional term devoting change is needed. In

the simplest case this will be a change in level, (S. Then,
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t-1
zt = I + A 4 , a . + A sin wt + 6 4- at

o 1-1
(2)

The argument of the sine term will be as function of n, generally including

a phase term:

2(t + K)

wt P

when t = time of observation

K = phase constant

P = period of the seasonal variation.

(3)

The model is linear in the sense of additivity of components, and is thus

amenable to solution by the method of least-squares, after transformation. The

t-1
additional error or shock terms, A

o
.E a. must be removed first. Box and Tiao

(1965) first showed the form of the transformation, and Kepke (1972) has given

a generalized method for any ARIMA process. For IMA (1,1), the transformed

observation yt is given by

Y- = zl

Y2 z2 zl (Ao 1)Y1

Yt zt zt-1 (Ao 1)Yt-1

which may be expressed

Adt-1L Ao)t-lwin

prior to intervention, and

(4)

(5)
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yt = (1 - AO)t.".1L + (1 - xo)t-lAilsin wil+ (1 - xo)t-11"1 lo + at (6)

after intervention. Notice that n1 observations were made prior to intervention,

and this fact is included in the intervention term. The yt's are now in the form

of the general linear model

and

------YF--Xa 4- E, vittrre

1 sin wi 0

X =
(1 -A) f(sin w2) 0

(1-x)2 f(sin w3) 0

. .

. .

.

(1-xo)n1-1 f(sin w ) 0

1Intervention....

(1-xo)nl 1

(1 -A0)

. (1
-A0)2

(1x
o

)

n
1
+n

2
-1

f(sin w
n +n

) (1-x
o

)
n
2
-1

1 2

a = {ALLI
6

f(sin wt) = A 721 li
0 i

ts1w
- A

o i sin wt-i -1 + sin wt

(7)

(8)
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Note that the amplitude is being estimated and the period is assumed to be known.

Practically, this will nearly always be true.

The least-squares estimates 0 are given by

= (X1X)-1ry (9)

No distribution theory for the errors has been mentioned. The assumption

of normality, generally reasonable, allows calculation of confidence intervals

about the estimates L, A, and i. The standard errors are given by

s0 . = s Ogr
a

where cjj is the'jh diagonal entry of (X1X)-1, and s2 "
+n

the
a n

1 2
-2 '

estimated error variance of the al The 100(1 - a)% confidence interval is

1 - 1-a/2
t
n

1
+n

2
-2se4TT

(10)

The derivation was made on the assumption of known parameter A
o

. In

general this will not be met, and an iterative procedure must be used to

estimate Ao. Solutions of (9) may be made for values of Ao (0)(.01)(2.0)

economically by computer, and a minimum variance criterion used to find the

best solution, with an estimate io of Ao. Box and Tiao (1965) also show a

Bayesian solution in which the posterior density function is maximized for

o
(see Glass et al 1972).

The model for IMA (2,2) is slightly more complicated. Here, the process

may wander from level to level, and it is thought that on theoretical grounds

solution will be much less satisfactory since a seasonal term may well be con-

founded with random changes in level. It is mentioned for completeness. The
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z
t

are given by

zt=L+A a.
ill

+ A . a + A sin + a
1 11 1 3L -1 j

at

Intervention will produce a d term.

The transformation is slightly more complicated and was derived by Glass

_(1972). The transformed observation yt are given by

y2 = z2 - 2z1 - (71 + A2 - 2)y1

yt = zt - 2zt_1 - (Al + A2 - 2)yt_1 - (1 (12)

and again, least-squares estimates may be calculated. Iterations over both

Al
and A

2
produce a two-dimensional plane of variances, and contour lines of

equal variance may be used to estimate Al and A2 (see Glass, 1972 , and

Box and Jenkins, 1970, p. 212-213.)

Method II

Another approach to the problem of seasonality is to estimate the amplitude

and period prior to least-squares analysis and remove the seasonal term,

leaving a residual which may be analyzed as an IMA (1,1) process. Thus

The estimate A may be made by

A A

zt = zt ". A sin w
t

(13)
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max(z
t

) - min(zt)
A for

"1
< t < )v2-

where t is in some restricted range. A can be shown to be unbiased. The new

observations z' are now treated as a simple IMA (1,1) process (or IMA (2,2)

if that is the case), and the zi yi by the transformation given in (4). Least-

squares estimates for L and d may then be computed.

Method III

Box and Jenkins (1970) suggest the method of differencing to cope with

seasonality. This in effect ignores the seasonal term by looking at residuals.

z' = z - z
t t+p t

(14)

where p = period of the seasonal component.

The residuals are treated as an IMA (1,1) process. The original intent

of this method lay in getting better estimates in forecasting, and a more complicated

multiplicative model was built from the pth differences. Such a model is not

comtemplated here, and the differencing was considered the final step in

this method.

Method IV

Yet another method of analysis is to ignore the seasonal component entirely

and analyze the process as if it were a non-seasonal IMA (1,1). The seasonal

component will increase the error variance, and give wider confidence intervals.
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Comparison of Methods

The four methods were used to analyze seven simulated processes which were

identical except that error variance and amplitude were varied. Table 1

gives a summary of the analyses. The processes were all IMA (1,1) processes

built according to equation (1). The seven processes are shown in Figure 1.

ts__for _Case I reveals method I to have estimated the__

process parameter (A
o
) and error variance best, although all estimates of L

and s are good. The results for Case 2 again show method I to be best, with

Methods II and IV somewhat worse. In Case 3 method II shows an error variance

closer to the actual case and better estimate of 6, although method I gives

a better estimate of amplitude. In Case 4 no method seems clearly superior

to another, and all do rather poorly. Method I shows better estimates of

A and A
o

than the others. Case 5 clearly demonstrates the superiority

of analysis by Method II in the situation of small error variance and large

sine term, and this is also true in Case 6 and Case 7, although better estimates

by method I occur in these cases than in Case 5.

The results suggest this conclusion: Method I is better when a small

amplitude seasonal component exists with respect to error variance (same order

of magnitude"; Method II is better when a large seasonal component is present

(with respect to error variance).

It is apparent that analysis is not nearly so precise as is possible

without the existence of seasonal terms. The periodic component tends to

confound examination of error variance, and quite probably one must be content with

results less exact than is possible in other cases.

Although no example was found which adequately fit the assumptions of the

IMA (1,1) model, an analysis is presented to illustrate the procedure. Airline



Table 1

Comparison of Estimates by Four Meth* for
Seven Simulated Seasonal Processes

Parameters Method I
(Linear sine

term included)
Estimates

Method II
(Seasonally
Adjusted)

Estimates

Method III
(Differenced)

Estimates

Method IV
(IMA (1,1)

Undifferenced)
Estimates

Case 1 L=50 49.6 48.7 50.5 ,,51

6=20 19.2 19.2 16.2 19
A=.7 .65 .88 (p=2) ,N,0 0

a2 =1 1.3 1.9 1.1 %1

A=1

t-statistic
1.0 2.5

for 6=0 17.7* 13.75*

Case 2 L=50 53.1 48.7 52.3 54.1

6=20 22.1 21.6 q,10 19.7
A=.7 .7 1.01 (p=2) q.0 .55
a2=25 34.0 46.3 q,60 31.3
Al =

t-statistc
2.6 6.5

for 6=0 3.60* 2.58*

Case 3 L=50 44.5 42.3 43.9 43.9
6=20 31.2 20.1 25.5 25.5
A=.7 .95 .54 .95 .95
a2=25 46.1 36.2 51.2 51.2
A=10

t-statistic
10.2 8.5

for 6=0 4.52* 3.71*

Case 4 L=50 42.0 36.2 54.9 45.7
6=20 31.2 11.3 14.4 17.3
a2=25 48.1 39.8 51.2 83.1
A=.7 .90 1.03 1.21 1.40
A=20

t-statistic
18.3 25.8

for 6=0 6.94* 1.76

Case 5 L=50 37.2 43.2 41 35.5
6=20 18.6 18.3 18 15.4
A=.7 1.65 .51 0 1.81
(72=1 19.0 3.4 5 27.6
A=20

t-statistic
7.9 20.0

for 6=0 5.62* 10.65*

Case 6 L=50 50.0 43.1 54.1 56.1
6=20 36.3 22.5 27.0 34.0
A=.7 1.1 .88 .79 1.45
02=16 29.7 18.5 26.7 49.9
A=20

t-statistic
13.4 24.0

for 6=0 6.50* 5.14*



Case 7

Table 1

Comparison of Estimates by Four Methods for
Seven Simulated Seasonal Processes

Parameters

L=50

6=20

x=.7
02=25

A= 5

t-statistic
for 6=0

Method I
(Linear sine

term included)
Estimates

.995
t
40

= 2.70

*p 4 .01

52.0

27.6
.8

24.6
5.2

5.55*

Method II

(Seasonally
Adjusted)
Estimates

51.2

20.6
.61

22.5
5.5

4.50*

Method III Method IV
(Differenced) (IMA (1,1)

Undifferenced)
Estimates Estimates

60

30

0

21

53.0

27.0
.47

19.7
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Figure 1. Seven Simulated Seasonal Time-Series Processes with Intervention
After 25 Observations.
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passengers carried by major airlines between 1949 and 1951 by month vary seasondlly.

No real intervention is thought to have occurred, but intervention is hypothesized

after Janua"' 1950. Thus, d = 0 for the analysis. The graph of the data

(from Box and Jenkins, 1970), is given in Figure 2. Parameter estimates for

methods I and II are summarized in Table 2.

The error variances are comparable in both methods, but the amplitude

is better estimated in method II. Inspection of the graph suggests the process

to have amplitude larger than error variance, thus implying better fit will

be gained from method II. The intervention effect was non-significantly

different from zero in both cases.

Analysis of the data by Box and Jenkins (1970) was performed using a

much more complicated multiplicative difference model. Error variances

ar. not reported.

Summary

The use of simple trigonometric terms to ac,:ount for seasonality may

have utility in analysis of time-series experimental data. Additional

complications of the linear model by complex components may well obscure

affects of intervention. Two methods of analysis are recommended. The first,

analysis with a sine (or cosine) term included in least-square estimation

works well with moderate seasonality -- that is, error variance comparable to

the amplitude of the sine component. The second method, seasonal adjustment

prior to analysis, works well with seasonal variation large with respect to

error variance.
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Table 2

Parameter Estimates for Total Airline Passengers
Carried Between 1949 and 1951

E

8

-2a
a

A

i

Method I

111.3

9.2*
174.0

7.9

1.45

Method II

134.2

5.4*
178

24.0

1.4

> .1 for 6 = 0

0
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